ZJAWISKA KRASOWE...

Wprowadzenie

Michał Gradziński

ZJAWISKA KRASOWE, POWSTAWANIE JASKIŃ, OSADY JASKINIOWE

Poniosły artykuł ma na celu przedstawienie geologicznych zagadnień związanych z krasowymi jaskiniami. Ze względu na ograniczoną objętość, oraz na potrzeby odbiorcy tego tekstu, wiele zagadnień przedstawionych jest skrótowo i w znacznym uproszczeniu, a niektóre problemy geologii krauza zostały w ogóle pominięte. Zainteresowanym poszerzaniem swej wiedzy można odesłać, do licznych, aczkolwiek w Polsce niestety trudno do-
stępnych podręczników speleologii.

Terminologia
Definicja jaskini, pomimo że intuicyjnie przez wszystkich wyczuwana, jest trudna do sformułowania. Najczęstiej przyjmu-
iana definicja zakłada, że jaskinia jest to naturalnie powstała próżnia w skałach, dostępna dla człowieka. W języku polskim funkcjonuje wiele określeń używanych zamiennie z terminem jas-
skina i służących do określenia jaskini specyficznego typu. Na-
ży te najczęściej dotyczą jaskiń o specyficznych kształcie - szczelinana, szpara, aven, lub jaskiń niewielkich, w całości odśnie-
thionych i nie posiadających specyficznych objawów - jaskiń w schronisku podkalniczym, schron. Wszystkie te obiekty będą w niniejszym artykule nazywane wspólną nazwą jaskinia.

Klasifikacje jaskiń
Stosowanych jest wiele klasifikacji jaskiń, których podsta-
wą są bardzo różnorodne kryteria. Klasifikacja podstawowa opiera się na kryterium wielkości jaskini w stosunku do wielkości skały. W pod-
dana jaskinia jest rozwinięta. Klasifikacja ta pozwala na wyróż-
nienie dwóch typów jaskiń:

- **Jaskinie pierwotne** - syngenetyczne - czyli powstałe ra-
 zem ze skał jej otaczającej. Do grupy tej należą tunele le-
 jawowe powstałe w skutek nierównomiernego krecznienia wydobywającej się na powierzchni awaryjne np. z Wysp Kanaryjskich i Islandii; pierwsze pustki rozwijające się w trakcie nierównomiernego wzrostu kor poralowych i próżnie powstałe podczas narastania martwic wapiennych. Należy zaznaczyć, że jaskinie pierwotne są stosunkowo nieliczne.

- **Jaskinie wtóre** - epigenetyczne - czyli rozwinięte po po-
 wstaniu skały jej otaczającej. Do tej grupy należą jaskinie zwané pierwszorzędowy skoraz genetycznie, które są rozwijane na skutek mechanicznej dezintegracji kompleksu skalnego, otrzymania i rozszerzania istniejących wcześniej szczelin. Taką genę ma np. wiele jaskiń bezskidzkich i płenińskich. Do jaskiń epigenetycznych należą też próżnie powstałe na kil-
 łowym wybrzeżu wskutek działania erozji morskiej czy też na stromych brzegach rzek lub pod wodospadami rozwinię-
 te na skutek erozji rzecznej. Jaskiniami epigenetycznymi są również wszystkie próżnie powstałe dzięki rozpuszczaniu skał przez wodę czyli jaskinie krasowe.

Należy również dodać, że jaskinie krasowe stanowią zde-
cydowaną większość wszystkich jaskiń. W związku z tym nadowa-
owany jest często podział na jaskinie krasowe i pozostałe znale niekrasowe lub pseudokrasowe.

Zjawiska krasowe, skały krasowiące i pro-
cesy ich rozpuszczania
Termin kras określa ogół procesów (zjawisk krasowych), którzy istotą jest rozpuszczanie skał przez wodę i związane z tym powstawanie charakterystycznych form rzeczy terenu, a tak-
że sieci podziemnego odwodnienia obszaru, jak również sam teren gdzie jaskinia występuje. Termin ten pochodzi od ser-
bochowackiego słowa „krs” będącego nazwą wyżynnego ob-
szaru położonego na południu Włoch i Słowenii, gdzie zjawis-
ka ta jest w sposób klasyczny rozwinięta. Słowo to transformo-
wowano do języka niemieckiego dalo „Kartes”, który to termin wzięli do międzynarodowego użycia.

Istatą jaskini krasowych jest rozpuszczanie skał przez wodę. Należy zdawać sobie sprawę, że każda skała ulega rozpu-
szczaniu przez wodę, jednakże zazwyczaj proces ten jest nie-
znakże powolny. Tylko nieliczne skały rozpuszczane są na tyle szybko, aby jaskinia krasowa mogła zasiedzić. Do skał tych należą:

- wapienie - zbudowane głównie z mineralu kalcytu o che-
 micznym wzorze CaCO₃,
- dolomity - zbudowane głównie z mineralu dolomitu o che-
 micznym wzorze CaMg(CO₃)₂,
- marmury - zbudowane głównie z kalcytu powstałe wskutek metamorfizmu wapieni i dolomitów,
- gipsy - zbudowane głównie z minerału gipsu o chemicz-
 nym wzorze CaSO₄·2H₂O,
- anhydryty - zbudowane głównie z mineralu anhydrytu wzor-
 ce CaSO₄,
- soli kamienne - zbudowane głównie z mineralu halitu o che-
 micznym wzorze NaCl,
- löd - istniejący na kuli ziemskiej w specyficznych warunkach klimatycznych.

Najwięcej jaskiń krasowych rozwiniętych jest w wapieniach, marmurach i dolomitach, gdyż te właśnie skały najliczniej z pośród wszyst-
kich wymienionych występują na kuli ziemskiej. Wapienie i dolomity tworzą też kompleksy o stosunkowo dużej objętości co umoż-
liwia powstanie odpowiednio dużych rozmiarów jaskiń. Natomiast jaskinie rozwinięte w gipsach i solach zazwyczaj są niewielkie, (wkrojonym są gipsowe jaskinie Podola) a ze względu na małą odporność mechaniczną tych skał szybko ulegają niszczeniu. Jaskinie rozwinięte w lodzie występują wyłącznie w wysokich górach oraz w strefie olobojęznej, ale tam gdzie temperatu-
ry umiarkowane umożliwiają wypływanie wody w stanie stałym i ciekkim.

Przechodzenie gipsu i soli kamiennej do roztworu odbywa się na drodze tzw. rozpuszczania fizycznego czyli bez zacho-
dzenia reakcji chemicznych. Minerały budujące te skały dzięki dysocjacji przechodzą do stanu ionowego. W przypadku wyżej wymienionych skal procesy fizyczne rozpuszczania są wydaj-
ne i pozwalają na intensywny rozwój jaskiń krasowych.

Proces rozpuszczania wapien, dolomity i marmury jest bardziej skomplikowany. Zostałe wizualizowany na przykładzie najpowszechniejszego mineralu węglanowego - kalcytu. Fizyczne rozpuszczanie (dysocjacja) kalcytu jest znacznie mniej wydajne od rozpuszczania gipsu czy soli kamiennej i jest to proces nieistotny z punktu widzenia jaskiń krasowych. Znacznie bardziej wydajnym jest proces chemicznego rozpu-
szczania kalcytu. Dla tego procesu jest konieczna zawartość CO₂ w wodzie rozpuszczonemu CO₂. Należy pamiętać, że będący naturalnym składnikiem atmosfery CO₂ jest zawsze obecny w wodzie opadowej. Dodatkowo, zwłaszcza w klimacie umiarko-
wym i tropikalnym, woda wzbogacana w CO₂ w glebie. Dzięki zawartości rozpuszczonego CO₂, woda staje się roztworem węgliczo- wego i może wchodzić w reakcję z kalcym. Wówczas przebiega reakcja:

\[
\text{Ca(CO}_3\text{)}_2 + H_2O + CO_2 \rightarrow Ca^{2+} + 2(HCO}_3\text{)}
\]
ZJAWISKA KRASOWE...

Efektom tej reakcji jest powstanie kwaśnego węglanu wapnia, który jest łatwo rozpuszczalny i znajduje się w roztworze jako jon wodorowęglanowy (HCO₃⁻) i jon Ca²⁺. Szybkość reakcji rozpuszczania zależy od wielu czynników (ilości CO₂ rozpuszczonego w wodzie, temperatury, aktywności organizmów gębowych). Rozpuszczanie skał krásowiących nazywa się korosją. Zazwyczaj w procesie powstawania próżni krásowych, zwłaszcza przy działaniu bardziej skoncentrowanych przepływów, korosja współuczestniczy z erozją - mechanicznym niszczeniem skały. Rola korosji i erozji jest w wielu przypadkach trudna do rozdzielenia.

Obieg wody w masywie krásowym

Rozwój systemów krásowych o dużych deniwelacjach

Warto rozważyć czynniki kontrolujące rozwój jaskiń głębokich - czyli interesujących z punktu widzenia alpinizmu podziemnego. Otóż rozwój głębokich systemów krásowych jest uwarunkowany przez dwa warunki - warunek morfologiczny oraz geologiczny (odpowiednią budowę geologiczną terenu). Warunek pierwszy istnieje dla głębokich deniwelacji od ponorów do bazy erozyjnej. Warunek ten jest spieniony w odpowiednio wysokich górach.

Warunek drugi wymaga istnienia sprzyjającej rozwojowi krasu budowy geologicznej. To znaczy muszą występować odpowiednio mięsiste i jednorodne kompleksy skal krásowiących. Jeżeli założymy poziome położenie warstw skalnych, rozwój systemów krásowych o dużej deniwelacji wymaga istnienia komplexów skal krásowiących o różnym wzniesieniu i szerokości wierzchołków sąsiadujących z nimi (w przypadku Fig. 1a).

Ponadto w obrębie komplexu warstw krásowiących znajdują się warstwy niskokrásowiące i nieprzepuszczalne, wówczas, pomimo istnienia znacznych deniwelacji, głębokie systemy krásowe nie mogą się rozwijać (Fig. 1b). Dodatkowo, sytuacja dla rozwoju systemów krásowych o dużej deniwelacji ma miejsce, gdy położenie warstw skalnych jest zaburzone tzn. warstwy są wychylonie z położenia poziomego. Wówczas głębokie systemy krásowe mogą

systematycznie ku dolowi następuje koncentracja przepływu - podobnie jak w sieci kanalizacyjnej.

Poziom odwodnienia masywu krásowego jest określany przez tzw. lokalną bazę erozyjną czyli najniższy możliwy do osiągnięcia poziom den dolinnych okalających masyw. Na wysokości zbliżonej do bazy erozyjnej są usytuowane obfité źródła krasowe zwane wywierzyskami lub wypływami. Źródła takie charakteryzują się zazwyczaj znacznymi wodami przepływu. Np. wielkość przepływu w słynnym źródele Vaucluse (kolarz Avignonu) waży się od ok. 4 m³/s do 250 m³/s. Dla porównania ta druga wielkość odpowiada średniej wielkości przepływu Sekwany w Paryżu. Warto więc zauważyć, że podziemne porządek przepływy mogą osiągać znaczną długość i deniwelację. Najdłuższe - liczące 75 km od ponorów do wywierzyska - zostały udokumentowane w Turcji. Natomiast w Chinach, Meksyku i w Kaukazie udokumentowano przepływy o deniwelacji ponad 2000 m.

Fig. 1. Możliwości rozwoju systemów krásowych w zależności od budowy geologicznej i rzeźby terenu.

a. warstwy położone poziomo, deniwelacje potencjalnego systemu krásowego (d) musi być mniejsza lub równa miąższości kompleksu skal krásowiących,

b. warstwy położone poziomo, w kompleksie warstw krásowiących występują horyzonty nierozpuszczalne ograniczające możliwość deniwelacji potencjalnego systemu krásowego (d),

c. warstwy w położeniu wychylonym, deniwelacje potencjalnego systemu krásowego (d) może być wielokrotnie większa od miąższości kompleksu skal krásowiących (m).

G. Berger

Fig. 2. Schematyczny przekrój geologiczny północnej części masywu Vercors z naniesionym położeniem Goûfre Berger rozwiniętej na kontakcie niższych niekrásowiących margli i wyższych wapien urgońskich (wg. Delannoy & Haffner, 1987 - uproszczony).

JASINIE 4
Zjawiska krasowe...

Powszechnie w kompleksie o niewielkiej miąższości (Fig. 1c). Właśnie w takim położeniu, w warstwach wychylonych, na styku utworów krasowiących i niekrasowiących są rozwinięte jedne z najgłębszych jaskiń świata Gouffre Berger (Fig. 2) i Pierre Saint Martin. Reasumując należy podkreślić, że terenem sprzyjającym powstaniu głębokich systemów odwodnienia krasowego są wysokie góry, gdzie istnieją znaczne deniwelacje pomiędzy po-norami i bazą erozyjną, a warstwy skalne są zazwyczaj wychylo- ne z położenia poziomego. Trzeba dodawać jednak, że zbytnie stek-tonizowanie kompleksów skalnych, często właśnie w obszarach górskich, i związane z nim istnienie wielu szczelin nie będzie sprzyjać koncentracji przepływu krasowego, a co za tym idzie rozwoju wielkich jaskiń.

Strefy cyrkulacji wody w systemie krasowym

W obrębie systemu odwodnienia krasowego można wyróżnić dwie odmienne strefy - wadacyjną i freacyjną. Strefa wadacyjna jest leżącą powyżej, zaś freacyjna poniżej zwierciadła wód podziemnych (Fig. 3). Strefa freacyjna jest zawsze w całości wypełniona wodą. Przepływ wody odbywa się w tej strefie w warunkach hydrodynamicznych, czyli możliwy jest przepływ wody pod ciśnieniem w górę. Natomiast w strefie wadycznej woda płynie zgodnie z prawem grawitacji. W związku z innym charakterem przepływu wód podziemnych, inne są kształty korytarzy jaskiniowych, a także inne formy morfologiczne powstałe na ścianach jaskiń w każdej strefie.

Dla strefy freacyjnej charakterystycznymi są korytary o okrągłym, owalnym lub gruszkoowym przekroju. Takie korytary zwane rurami występują w wielu jaskiniach polskich, a zwłaszcza w Tatrach (np. Kasprowa Niznia, Czarna, Zimna) (Fig. 4). Klasyfikującym przykładem korytarzy powstałych w warunkach z sobą zwane głąbczastymi. Korytary powstałe w strefie freacyjnej mają często U-kształt przekrój podłużny i zwane są syfonami.

Warto zwrócić uwagę również na drobne formy morfologiczne rozwinięte na ścianach jaskiń. Do najciekawszych należą jamki wirowe (Fig. 5). Są to zagłębieńia o długości przeciętnie kilku lub kilkunastu centymetrow. Typowe formy mają asymetryczny profil poprzeczny, dzięki czemu pozwalają na określenie zwrótu przepływu, który je uformował. Jamki wirowe powstają na skutek wioskowych zawierania w prądzie wody. Jeżeli jamki wirowe występują nie tylko na ścianach jaskiń, ale także na stropie świadczą o przynajmniej okresowym pano- waniu warunków freacyjnych. Ponadto o warunkach freacyjnych świadczą również kotły wirowe rozwinięte w stropie jaskiń. Klasycznie rozwinięte są kotły wirowe w Jaskini Ciemnej (Dolina Prądnika), a występują także w wielu innych jaskiniach (Zimna, Miętusia).

W strefie wadycznej rozwijają się korytary o charakterystycznej krzywą (często zarówno w poziomym jak i pionowym przekroju) przebiegu zwane meandrami. W ścianach meandrów występują półkoliste lub łukowate wcięcia - niszce zalekowe (Fig. 6, 7). Na stromszych odcinkach korytary powstają kaskadowe progi z położonymi na stopniach misami, zwykle wypełnionymi wodą (Fig. 8). Misy takie noszą nazwę marnitów. Ponadto dla strefy wadycznej typowe są studnie, z pionowymi ryn-纳米ami powstalymi na skutek cofania się górnej, erodowanej przez potok krawędzi. Wszystkie te wymienione formy są doskonale widoczne w wielu dużych i powszechnie odwiedzanych jaski- niach tatrzanskich np. Wielkiej Śnieżnej, Miętusiej, Bandzioczu Kominiarzkiego, Koziej, Piastowej i in.

Należy zwrócić uwagę, że w miarę rozwoju systemu krasowego obniża się zwykle lokalna baza erozyjna, a co za tym idzie również zwierciadło wód podziemnych. Obniża się więc

Fig. 3. Schematyczną przekrój przez jaskinię; widoczna strefa wadyczna i freacyjna.

Fig. 4. Przekroje poprzeczne typowych korytarzy strefy freacyjnej:
- A - okrągły,
- B, C - gruszkoowaty,
- D, E - soczewkowaty.

Fig. 5. Jamki wirowe, rzut i przekrój podłużny, strzałka wskazuje kierunek prądu (wg. Bogli, 1980).

Fig. 6. Meander - plan.

JASKINIE 4
Zjawiska krasowe...

Fig. 7. Przekroje poprzeczne typowych korytaryków strefy wadyjecznej:
- a - meander z niszami zakońcowymi,
b - c - korytarz o przekroju typu „dziurki od klucza”,
d - korytarz wypełniony osadami.

Fig. 8. Kaskadowe progi z marnitami (przekrój podłużny).

Powierzchniowe formy rzeźby krasowej

Woda opadowa agresywna w stosunku do podłoża nimi wniknie w głęb systemu krasowego powoduje rozpuszczanie i tworzenie charakterystycznych powierzchniowych form rzeźby krasowej. Formy te mają bardzo zróżnicowany kształt, a ich wielkość sięga od centymetrów do kilometrów.

Formy stosunkowo niewielkie, o długości do kilku metrów to złotki krasowe. Są to różnych kształtów rynienki, którymi spływa agresywna w stosunku do podłoża woda. Woda ta systematycznie powiększa poszczególne złotki. W Polsce klasyczne złotki krasowe nie występują licznie. Można je obserwować np. w Wielkiej Świstówce lub w Jeziornie. Natomiast w obszarze Gór Dynarskich lub w wapiennych masywach Alp i Piramieńskich tworzą się charakterystyczne powierzchniowe skalne pozbawione znaczących ilości gleby, pokryte wyraźnymi złotkami krasowymi nazywanymi lapiazem.

Wyższych rzędu i większych rozmiarów formy typowe dla rzeźby krasowej związane są ze skoncentrowanym powierzchniowym spływem wody do ponorów. Wśród tych form wyróżnia się: leje krasowe, ślepne doliny, uwalę i pola. Leje krasowe są to bezodpływowe zagłębiania o okrągłym lub owalnym kształcie i średniicy zwykle większej od głębokości. Całość wody spływającej do lej krasowych odpływa z nich przez znajdujące się w nich dnia ponory. Lej krasowy może być wypełniony materiałem nierozpuszczalnym i na jego stokach nie widać bezpośrednio rozpuszczanej skały krasowej. Takie leje można spotkać w wielu miejscach na Wyżynie Krakowsko-Wieluńskiej (są one zwykle wypełnione przemętym lesem), a także w Tatrach np. powstające pod przykryciem osadów lodowcowych leje na Halli Gąsieniowej. Osady wypełniające je mogą spowodować zatkanie podziemnego odpływu, co sprzyja powstawaniu okresowych jeziorek krasowych.

W obszarze krasowym mogą też występować różnych rozmiarów doliny z zaszytykowej dolinowej ciekami wody prowadzącymi do ponorów znajdujących się w stromym zamykającym dolinę zboczu zwanym rynkiem. Tego typu doliny, ze względu na brak powierzchniowego odpływu nazywają się śrubowymi dolinami. Najlepiej wykształconą w Polsce śrubą doliną jest „żyłkiewic” koło Białego Kościoła.

Polaczenie kilku lejów tworzy rozległąścią wklęsłą formę rzeczy zwana wualami. Natomiast forma zdechowiania większa o zaszytykowej płaskim dnie i długości do kilku metrów nazywana jest poljem. Klasyczne zdechowane były uwały i pola znan są z kras Góra Dynarskich. Polja są znane także z obszarów krasu tropikalnego - Kuby, Jamajki, Chin, Wietnamu, Malezji. Tam są ograniczone przez wzgórza o stromych ścianach i często płaskich grzbietach zwane mogotami. Tego typu kras tropikalny nazywa się krasem mogotowym lub koplastym.

Osady jaskiniowe

Osady klastyczne

Do osadów klastycznych należą wszystkie namuliska jaskiniowe złożone z ziarn o różnej wielkości. Można wyróżnić: - zwiry (ziarna powyżej 2 mm średnicy), - płaski (ziarna od 2 do 0.064 mm średnicy) i - muły (mieszańce płaski i ziarn drobniejszych). Osady te są zwykle transportowane przez podziemne cieki wodne i następnie osadzane. Mogą być one sementowane. Do osadów detrytycznych należą również przygotowanie powstające w wyniku i w wyniku denen, a także zmiany w krasie znajdującej się w przykryciu osadami.

Osady wypełniające dno jaskiń nazywane są namuliskami. Często drobnoziomiste namuliska (mułowskie lub ilast) są nazywane namuliskami glinami.

Na ścianach jaskiń widoczne są listwy, zbudowane ze sementowanych osadów, będących pozostałościami dawnych poziomów namuliska. Czasami specyficznie sementowane, a następnie wypraworne namuliska znacznie są do form naciecznych (np. kuliste konstrukcje z Jaskini Kasprowej Niżniej, czy nieistniejące już Blote Zamiaki z Jaskini Młotowej).

Wśród osadów klastycznych wyróżnić można osady allottoniczne - złożone z materiału naniesionego do jaskini spora obszaru krasowego, oraz autoalluttoniczne - złożone z materiału lokalnego. Typowym przykładem osadów alluttonicznych są powstające w jaskiniach tatrzańskich żwiry i płaski podające za skal metamoroficznych. Osady te obfitują w kwarce, feldszyki i inne minerały krzemianowe. Natomiast do osadów autoallotonicznych zalicza się rdzudalne ily i opady ze stropu gruz.

Nacieki jaskiniorowe

Nacieki jaskiniowe powstają w skutek crystallizacji mineralów z roztworów wodnych. Skład mineralny nacieków zależy więc od tego jakie substancje są rozpuszczane w roztworze docierającym do jaskini. Na obszarze węglanowym nacieki są zbudowane głównie z węglanu wapnia wykształconego jako kalci, lub rzadziej występującego aragonit. W krasie gisową z dolnymi będą odpowiednio zbudowane z gipsu i halit. Formy naciekowe mogą być także zbudowane z lodu.

Crystallizacja nacieków jest odwróceniem procesu rozpuszczania skały krasowej przez wodę. Proces ten dla węglanu wapnia...
Zjawiska krasowe...

W jaskiniach występują formy naciekowe o bardzo różnorodnych kształtach (S. 3). Kształty te zależą od stopnia działania wody na poszczególne formy naciekowe. Ogólnie wyróżnia się formy związane ze skapiwaniem wody, spływaniem wody po ścianach, powstają pod powierzchnią wody w jeziorkach oraz formy aglomeracyjne.

Nacieki związane ze spływaniem wody wodnego po ścianach to różnorodne polewy naciekowe. Na nachylonych powierzchniach formują one charakterystyczne tarasowe ułożone niebieskawe zagłębenia zwane polami rzygowymi. Tego typu zagłębień jest lecz większych rozmiarów nazywane są misami martwicowymi. Na powierzchniach przewieszonych polewy budują różnych kształtów żebra, zasłony i draperie.

Nacieki powstające w warunkach podwodnych to krystałki kalcytu wzrastające na dnie jezior. Ponadto w warunkach podwodnych, w misach martwicowych lub miszakach, pół rzygowych występują specyficzne buli lub oraalowe formy zwane popularnie płożitami lub perliami jaskiniowymi. Złożone są one z jąder i koncentrycznych powłok węgla wrapania i, z punktu widzenia geologii, należą do grupy tzw. ziem obliczonych.

Odmienne kategorii nacieków jaskiniowych, pospolitych w jaskiniach trzcinarskich, są formy zbudowane z miękkiej, silnie zawodzonej (do 90% wody) substancji nazywanej mleko wapienne. Mleko wapienne tworzy różnorodne nacieki. Kształty niektórych z tych nacieków są identyczne jak popularnych „wıldrych” nacieków węglowych (pola rzywów, żebra, zasłony obliczone). Ponadto dzięki swoim plastycznym właściwościom mleko wapienne może tworzyć także innych kształtów formy jak loptaty czy też obłe nacieki kóżuchowe. Geneza mleka wapiennego jest związana z działalnością mikroorganizmów (bakterii i grzybów) wytrząsających węglan wapnia.

Barwa nacieków jaskiniowych jest różnorodna od prze-żółtej, poprzez biłą, różne odcienie żółtej, aż do brązowej. Zabarania żółte i brązowe są związane z domieszką tlenkami kwasyferną występującymi w obrębie nacieków.

Formy naciekowe zbudowane z mleka wapiennego są nazywane polowym i stalagtym. Lodowe stalagmy na stałej średnicy na całej długości wody są nazywane „chłopkami lodowymi”. Nacieki lodowe występują powszechnie, w naszej strefie klimatycznej, w zimie w przyotworowych częściach jaskiń, a cały rok w tzw. jaskiniach lodowych lub w dolnych otworach dużych jaskiń np. Wielkiej Śnieżnej, Bandziocha Komińskiego. Związane jest to z mechanizmem crytallizacji powietrza w jaskiniach wielkotwarowych.

Osady organogennicne

Trzeba dodać, że w jaskiniach występują także grupa osadów nie należąca do żadnej z wyróżnionych powyżej kategorii (osadów kwaskowych i nacieków jaskiniowych). Są to osady organogennicne. W jaskiniach polskich w zasadzie jedynym przykładem osadów organogenicznych jest, występujące jedynie sporadycznie, guano nietoperz. Należy zaznaczyć jednak, że liczne różnorodne osady organogeniczne występują w jaskiniach klimatu tropikalnego.